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A characteristic equation for a system of equations of motion of a cubically anisotropic medium with allow-
ance for the relaxation time of thermal disturbances has been obtained, and expressions for the velocities of
propagation of modified elastic and thermal waves have been found. The surfaces of inverse velocities have
been constructed and the influence of the effect of interrelationship of thermal and mechanical fields on the
change in the phase velocities of propagation of a quasilongitudinal elastic wave and a thermal wave in dif-
ferent planes of a cubically anisotropic material has been analyzed.

Introduction. The regularities of the propagation of plane waves and discontinuity surfaces in isotropic and
anisotropic media whose thermal properties are described by a generalized (hyperbolic) heat-conduction law have been
the focus of quite numerous works [1–3]. Below, we present results of implementing the method of characteristics of
the theory of partial differential equations [4, 5] as applied to a system of equations of motion of a thermoelastic cu-
bically anisotropic medium with account for the relaxation time of thermal disturbances.

Characteristic Equation. The resolving system of differential equations for thermoelastic anisotropic materials
of a cubic symmetry system will be represented, according to [3], in the form
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We specify the initial conditions to system (1) on the surface z(x1, x2, x3, t) = 0 and pass to new variables z,
z1, z2, and z3 according to the following scheme:

g = z (x1, x2, x3, t) ,   gi = zi (x1, x2, x3, t) ,   i = 1, 3
___

 .

Then
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(2)

We substitute the relations for the derivatives of first and second orders in variables x1, x2, x3, and t, which
have been expressed by the variables z, z1, z2, and z3, into the system of equations (1) and write the equations con-
taining partial derivatives of second order g. As a result we obtain
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The partial derivatives 
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 and 
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___
 can have weak discontinuities on the surface z(x1, x2, x3, t) = 0 only

in the case where the equality of the determinant composed of the coefficients of these derivatives to zero holds. After
simple manipulations, we represent the characteristic determinant in the following form:

det  wij7×7  = 0 , (4)
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Expanding the determinant (4), we obtain
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Here we have introduced the following notation:

k0 = − n∗ ,   k1 = (1 + n∗ (1 + 2b + ε)) δ1 , (6)

k2 = − 1 + b
2
n∗ + 2b (1 + n∗ + εn∗) 


δ1

2
 − 2δ2


 

− 2 + 2b
2
n∗ + b (4 − 2 (a − 1) n∗) − (a − 1) n∗ (1 + a + 2ε) δ2 ; (7)

k3 = b 2 + b (1 + n∗ + εn∗) 

δ1

3
 − 3δ1δ2 + 3δ3


 

+ 4b
3
n∗ + 6 (a − 1) (an∗ + εn∗ − 1) + 6b

2
 (an∗ + εn∗ + 1) 

− (a − 1) 3 + n∗ + 3εn∗ − 2a
2
n∗ + a (3 + n∗ − 3εn∗)


 δ3 

+ 1 − a
2
 (1 + bn∗) + b

2
 (3 + n∗ − εn∗) − 2ab (1 + bn∗ + εn∗) + b (4 + n∗ + 2εn∗) (δ1δ2 − 3δ3) ,

(8)

k4 = − b
2
 δ1

4
 − 4δ1

2δ2 + 2δ2
2
 + 4δ1δ3


 + (a − 1) (1 + a + 2b) b 

× δ1
2δ2 − 2δ2

2
 − δ1δ3


 + 2b a

2
 − 1 − b + 2ab 


δ2

2
 − 2δ1δ3


 

− 1 + 2a
3
 + 2b + 2ab (b − 3) + 2b

2
 (1 + 2b) + a

2
 (4b − 3) δ1δ3 . (9)

410



The characteristic equation (5) yields the existence of a stationary discontinuity surface, three modified elastic
waves whose propagation is affected by a temperature field, and the modified thermal wave whose propagation is ac-
companied by elastic deformations.

Velocities of Propagation of Waves. Taking into account that the velocity of propagation of the discontinuity
surface is V2 = p0

2 ⁄ δ1 [4], after simple manipulsations, we represent Eq. (5) in the form
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^

s are obtained from formulas (6)–(9) for the coefficients ks, s = 1, 4
___

, by replacement of the sym-
metric polynomials δ1, δ2, and δ3 by δ^ 1, δ^ 2, and δ^ 3. Expressions for velocities will be found using the cubic resolvent
[6] of Eq. (10). As a result we obtain
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Fig. 1. Surfaces of inverse velocities for modified elastic and thermal waves
propagating with velocities: 1) v1, 2) v2, 3) v3, and 4) v4.
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δij = 1 if i = j and δij = 0 if i ≠ j and i = 1, 4
___

.
We note that a modified quasilongitudinal elastic wave propagates with a velocity v1, modified quasitransverse

elastic waves propagate with velocities v2 and v3, and a modified thermal wave propagates with a velocity v4.
Velocity Surfaces and Their Sections. Formulas (11) enable us to construct inverse-velocity surfaces (or ve-

locity surfaces) and to characterize the dependences of the velocities of propagation of thermoelastic waves v1 (phase
velocity) on the slope of the normal to the characteristic surface. Figure 1 gives the inverse-velocity surfaces for modi-
fied elastic and thermal waves propagating in lead (a = 0.84, b = 0.31, ε = 0.609, and n = 1.7; the numerical data
have been taken from [7–9]). To find the absolute values of the velocities of propagation of the waves we must mul-
tiply the reciprocals of the relative values by c1 = √A1

 ⁄ ρ .
From Fig. 1, it is clear that the surface of inverse velocities of the modified thermal wave propagating with

a velocity v4 is virtually no different from a sphere, i.e., the phase velocity of this wave is independent of the slope
of the normal to the characteristic surface. The surfaces of inverse velocities of the quasitransverse waves contain con-
vexity and concavity portions, which points to the occurrence of lacunas on the wave front. For quantitative analysis
of the influence of the interrelationship of a deformation field and a temperature field on the propagation of wave mo-
tions in cubically anisotropic materials we consider the sections of inverse-velocity surfaces by coordinates planes and
by planes passing through the origin of coordinates. Figure 2 gives the ratios of the velocities of the modified elastic
v1

 ⁄ v01 and thermal waves v4
 ⁄ v04 propagating in the coordinate plane x3 = 0 and in the plane x^ 2 = 0 passing through

the bisector of the coordinate angle x10x2 and the coordinate axis x3 as functions the slope of the normal to the char-
acteristic surface (v01 and v04 are the velocities of propagation of the quasilongitudinal elastic and thermal waves re-
spectively). In constructing, we use the numerical data given above.

It is noteworthy that the dependences of the velocity ratios v1
 ⁄ v01 and v4

 ⁄ v04 in the coordinate planes x1 = 0
and x2 = 0 have the same form as those in the plane x3 = 0. From Fig. 2, it is clear that the appearance of a thermal
field causes the velocity of propagation of the quasilongitudinal elastic wave to increase and the velocity of propagation
of the thermal wave to decrease. The increase in the velocity is the largest (C6%) in the coordinate plane x3 = 0; the
minimum (C3.5%) change in the velocities v1 and v4 is observed in the plane x^ 2 = 0. No change in the velocities of
propagation of the quasitransverse waves in the coordinate planes and in the plane x^ 2 = 0 due to the action of the tem-
perature field has been found.

CONCLUSIONS

The expressions obtained for velocities enable us to evaluate the influence of the relaxation time of thermal
disturbances on the velocities of propagation of elastic and thermal waves with allowance for the interrelationship of
mechanical and temperature fields. An analysis of the dependences of the velocities v1 and v4 on the slope of the nor-
mal to the characteristic surface, which has been made for different planes of a cubically anisotropic material at dif-
ferent times of relaxation of thermal disturbances (n∗ = 1 ... 2), has shown that the parameter n∗ most substantially
affects the velocity of propagation of a modified quasilongitudinal wave.

Fig. 2. Velocity ratios v1
 ⁄ v01 and v4

 ⁄ v04 vs. slope of the normal to the char-
acteristic surface for different planes of a cubically anisotropic material: 1)
plane x3 = 0; 2) plane x^ 2 = 0.
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NOTATION

A1, A2, and A4, elasticity constants; a = A2
 ⁄ A1, b = A4

 ⁄ A1, and c1 = √A1
 ⁄ ρ ; cε, specific heat at constant

deformation; ni = cos α, direction cosines of the slope of the normal to the characteristic surface; n∗ = τω∗, char-

acteristic number of vibrations; pi = ∂z ⁄ ∂xi, p0 = ∂z ⁄ ∂t, and qi, components of the heat-flux vector; T, change in

the absolute temperature; T0, initial temperature; t, time variable; ui, displacement-vector components; v = V ⁄ c1, di-

mensionless velocity of propagation of the discontinuity surface; ∆, Laplace operator; α, angle between the normal

to the characteristic surface and the coordinate axis; αth, coefficient of linear thermal expansion; β = (A1 + 2A2)αth;

δ1 = p1
2 + p2

2 + p3
2; δ2 = p1

2p2
2 + p3

2p2
2 + p1

2p3
2; δ3 = p1

2p2
2p3

2; δ^ 1 = n1
2 + n2

2 + n3
2; δ^ 2 = n1

2n2
2 + n3

2n2
2 + n1

2n3
2; δ^ 3 = n1

2n2
2n3

2;

ε = T0β
2 ⁄ (A1cε), dimensionless connectivity coefficient; λ, thermal conductivity; ρ, density; τ, relaxation time of

thermal disturbances; ω∗ = cεA1
 ⁄ λ, characteristic quantity having the dimensions of a particle; ∂i = ∂ ⁄ ∂xi and ∂t =

∂ ⁄ ∂t. Subscript: th, thermal.
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